Run Probabilistic Uncertainty Analysis

run_psa(model, psa, N, resample)

Arguments

model

The result of run_model().

psa

Resampling distribution for parameters defined by define_psa().

N

> 0. Number of simulation to run.

resample

Deprecated. Resampling distribution for parameters defined by define_psa().

Value

A list with one data.frame per model.

Examples

# example for run_psa mod1 <- define_strategy( transition = define_transition( .5, .5, .1, .9 ), define_state( cost = cost_init + age * 5, ly = 1 ), define_state( cost = cost_init + age, ly = 0 ) )
#> No named state -> generating names.
#> No named state -> generating names.
mod2 <- define_strategy( transition = define_transition( p_trans, C, .1, .9 ), define_state( cost = 789 * age / 10, ly = 1 ), define_state( cost = 456 * age / 10, ly = 0 ) )
#> No named state -> generating names.
#> No named state -> generating names.
res2 <- run_model( mod1, mod2, parameters = define_parameters( age_init = 60, cost_init = 1000, age = age_init + markov_cycle, p_trans = .7 ), init = 1:0, cycles = 10, cost = cost, effect = ly )
#> No named model -> generating names.
rsp <- define_psa( age_init ~ normal(60, 10), cost_init ~ normal(1000, 100), p_trans ~ binomial(.7, 100), correlation = matrix(c( 1, .4, 0, .4, 1, 0, 0, 0, 1 ), byrow = TRUE, ncol = 3) ) # with run_model result # (only 10 resample for speed) ndt1 <- run_psa(res2, psa = rsp, N = 10)
#> Resampling strategy 'I'...
#> Resampling strategy 'II'...